Nanoparticle Clustering within Lipid Membranes Induced by Surrounding Medium. Nanomechanical and Thermotropic Study on Model Lipid Membranes

نویسندگان

  • Suzana Šegota
  • Danijela Vojta
  • Dania Kendziora
  • Ishtiaq Ahmed
  • Ljiljana Fruk
  • Goran Baranović
چکیده

The research of the nanoparticle (NP) delivery systems and the use of NPs both for diagnostic and therapeutic purposes have created a need for understanding the complex interactions of NPs with cells. Membrane-NP interactions are of crucial importance both for the cell uptake and toxicological investigations. For that reason, lipids that are the cell membrane building blocks, have been used as simplified model systems to study not only the mechanical properties of the membranes and their interactions with different molecular species, but also their structural organization in, for example, marine ecosystems, which are particularly sensitive to the toxicological environmental effects [1]. The interactions between hydrophobic or semihydrophobic gold and silver NPs and a dimyristoylphosphatidylcholine (DMPC) bilayer as a model cell membrane in two ionic solutions result in the structural reorganization within the bilayer manifested as locally increased nanomechanical compaction in the vicinity of NP clusters as well as changed overall thermotropic properties. The reorganization was investigated by AFM imaging, force spectroscopy and IR spectroscopy. The effects of NP surface charge and hydrophobicity were examined by using two different dithiole ligands. First, hydrophobic stearyl amine was coupled to lipoic acid coated gold and silver NPs. Second, newly synthesized positively charged semihydrophobic ligand containing additional amine group was used to functionalize gold and silver NPs by ligand exchange method. The mean diameter of the NPs estimated from the mean heights as observed by AFM imaging was 3 nm, i.e. small enough to enable embedding of NPs within the bilayer. The ligand effect of NPs on a non-local level of the bilayer phase change (bulk property) has been recorded as lowering of the phase transition temperature at the most by 1.0 C in PBS and as increasing of the phase transition temperature at the most by 0.5 C in seawater. The force spectroscopy results, on the other hand, indicated that (semi)hydrophobic NPs increased the bilayer density around NP clusters and thus locally increased lateral compaction of the bilayer. The strengthening effect was observed for both the silver and the gold NPs in a high ionic strength solution such as seawater (SW), while it was absent under physiological conditions. The local lipid rearrangement induces the long range lipid reorganization resulting in the bilayer phase transition shifting towards lower or higher temperatures depending on the solution ionic strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanomechanical spectroscopy of synthetic and biological membranes.

We report that atomic force microscopy based high-speed nanomechanical analysis can identify components of complex heterogeneous synthetic and biological membranes from the measured spectrum of nanomechanical properties. We have investigated phase separated ternary lipid bilayers and purple membranes of Halobacterium salinarum. The nanomechanical spectra recorded on these samples identify all m...

متن کامل

Cholesterol-dependent thermotropic behavior and organization of neuronal membranes.

The composition of neuronal membranes is unique with diverse lipid composition due to evolutionary requirement. The organization and dynamics of neuronal membranes are crucial for efficient functioning of neuronal receptors. We have previously established hippocampal membranes as a convenient natural source for exploring lipid-protein interactions, and organization of neuronal receptors. Keepin...

متن کامل

Using DSC to characterize thermotropic phase transitions in lipid bilayer membranes

Lipids are fundamental constituents of cell membranes, forming a lipid bilayer into or onto the surface of which proteins and other constituents are incorporated or bound. Biological membranes require a mainly fluid environment for proper function, but different states of fluidity are also important, as these provide membrane compartmentalization (such as lipid-raft domains in plasma membranes,...

متن کامل

Expansion and apparent fluidity decrease of nuclear membranes induced by low Ca/Mg. Modulation of nuclear membrane lipid fluidity by the membrane-associated nuclear matrix proteins?

Macronuclei isolated from Tetrahymena are contracted in form (average diameter: 10.2 micron) at a final Ca/Mg (3:2)concentration of 5 mM. Lowering the ion concentration to 1 mM induces an expansion of the average nuclear diameter to 12.2 micron. Both contracted and expanded nuclei are surrounded by a largely intact nuclear envelope as revealed by thin-sectioning electron microscopy. Nuclear swe...

متن کامل

Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015